Project Partners

Engineering that inspires

The GREENER project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement No. 826312.

Contact

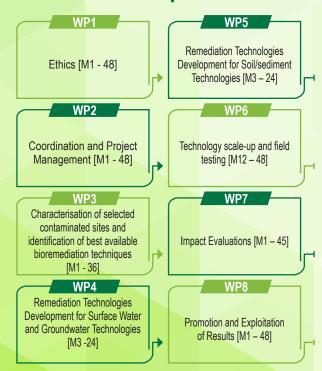
First Floor,
Coventry Innovation Village,
Office IV7, Cheetah Rd,
Coventry CV1 2TL
United Kingdom

e-mail: info@greener-h2020.eu

CE-BIOTEC-04-2018: InteGRated systems for Effective ENvironmEntal Remediation

Project Details

Start date: 1 March 2019


Duration: 4 years

EU contribution:

EUR 4,964,168.25

Project webpage: www.greener-h2020.eu

Workplan

Project Description

GREENER proposes the development of green, sustainable, efficient, and low-cost solutions for soil/ sediment and water bioremediation, by integrating several remediation strategies with innovative bioelectrochemical technologies. The project focuses on accelerating the remediation time of a range of organic and inorganic pollutants of high concern, while producing end-products of interests, such as bioelectricity and/or harmless metabolites of industrial interest. To achieve such an ambitious goal, organisms with high bioremediation ability will be identified and isolated, the influence of physico-chemical factors on the effectiveness of treatment will be evaluated and proofof-concept experiments to define optimal integrated solutions at the lab-scale will be performed. Finally, a combination of the most promising technologies will be up-scaled and tested on field. Life cycle analyses will demonstrate the technical and economic feasibility of the solutions suggested.

Objectives

To map, select, characterise and assess different polluted waters and soils/ sediments To asses & study the microbial consortia for water and soil OBJ 2 bioremediation and isolation of best performing species To develop, improve, optimise and evaluate the effectiveness OBJ 3 and impact of technologies To improve, optimise and demonstrate the effectiveness and impact of biological strategies for soil bioremediation To demonstrate hybrid bioremediation systems for the OBJ 5 treatment of contaminated water To scale-up the optimum technologies developed for water and soil bioremediation To scale-up the optimum technologies developed for water and OBJ 7 soil bioremediation To demonstrate, monitor and validate the performance of the different technologies To define suitable business models for diversification, OBJ 9 exploitable results and identify potential value chains To demonstrate the safety & regulatory compliance, and to conduct environmental & economic sustainability assessments To maximise the innovation impacts of the project for contributing to the uptake of the project results for growth & jobs

Technologies

GREENER will include technologies such as, bioplie (soil/sediment), ecopile (soil/sediment), phycoremediation (water), phytoremediation (soil/sediment and water), novel technology for metal and recovery of nanoparticles (water), bio-electrochemical systems such as, MFCs, MECs, SMFCs (soil/sediment and/or water) and hybrid systems such as, PFC (soil/sediment) and CW-MFC (water), two demonstrators for the pilot activities in soil/sediment (ACC, SDAS) and water (TAUW, QUST).

